
Unix Command-Line
CS3670

Estimated completion time: 45 minutes

This tutorial is meant to help the novice Unix user become more familiar with some of
the commonly used commands. Unix is still (and maybe always will be) a very strong
command-line environment, although Apple has successfully hidden Unix underneath the
Mac OS X graphical user interface (GUI). However, this tutorial will emphasize the
command-line, even though many things can be done via some window. The windowing
environment can be so different from one “flavor” of Unix to another (and sometimes
within the same flavor of Unix) that it is best to stick with those commands that will
probably work on all flavors.

I. Historical Background
There are many flavors of the Unix operating system, Linux being just one of several free
versions. Two examples of other free versions of Unix include FreeBSD and OpenBSD,
which for one reason or another have not captured the public attention like Linux has.
CentOS is a distribution of Linux, which is the Linux operating system packaged with a
lot of additional free and homegrown software to make it useable. There are other Linux
distributions, such as Fedora, Ubuntu, Caldera, SuSe and many more. The following
graph1 shows many distributions and their “popularity” over time.

1 http://core0.staticworld.net/images/article/2015/12/slide-08-100633995-orig.jpg
[Accessed Dec. 30, 2015]

1 Rev: 2016-09-29

http://core0.staticworld.net/images/article/2015/12/slide-08-100633995-orig.jpg

There are many commercial versions of Unix, such as Sun Solaris (now Oracle Solaris),
Hewlett Packard HPUX, IBM AIX, etc. However, the line between commercial and free
is blurring, after Sun provided a free download of its OS, and also because the Mac OS is
based mostly on FreeBSD and is now free. If you prefer, IBM will also sell you
computer hardware with Linux installed instead of their AIX.

Whether free or commercial, the different flavors of Unix are mostly based on the
original Unix operating system created in 1971 by a small team at AT&T. However,
because AT&T was prohibited from selling operating systems (because AT&T was
judged to be an illegal monopoly), they licensed the code to various organizations. As a
result, some of these organizations modified the operating system to meet their specific
needs. Most notable are the modifications made at the University of California at
Berkeley (The “B” in BSD). At this point the Unix world was split into two branches:
those based on the BSD work, and those based on what was referred to as System III.
SunOS, for example, was based on BSD. [Linux is not based on any AT&T code, but
was written from scratch instead, and is therefore considered a Unix clone.] Novell
obtained the rights to the source code from AT&T in the early 1990s. Even Microsoft at
one time marketed a popular brand of Unix they called Xenix.

Eventually, an effort was made to unify the two Unix branches, which became known as
System V, release 4 (SVR4), but there were still some subtle differences. Since then, the
various flavors have once again drifted apart. These differences, however, are not
typically noticeable to the average user of a Unix system. A user on one Unix system can
almost transparently move to another, as far as the command-line is concerned (though
the windowing environment is another thing). But it can be difficult for a system
administrator to move between the two different kinds of Unix.

The remaining sections provide a hands-on tutorial of the Unix command line and scripts.
Note that this is just an introduction.

Warning: In the commands given in this instruction, the difference between the number
one (‘1’) and the lower-case letter ell (‘l’) can be very slight, if anything. The context for
the commands should tell you what it ought to be.

II. Getting Started
Boot your Linux system or VM. If
necessary, log in and then open a terminal
window and cd to the labtainer/labtainer-
student directory. The pre-packaged
Labtainer VM will start with such a
terminal open for you. Then start the lab:

labtainer nix-commands

III.Basic Commands

Commands in Unix are typed into what is
called a shell. Each command takes some

number of arguments, which are known as
“command-line arguments”, “arguments”
or “options”. (In Microsoft lingo, these
options are referred to as “switches”).
The shell does not execute commands
until the Enter key is pressed. Any
errors are reported in the shell window.

When the lab starts, you will be presented
with a black virtual terminal, and the
current directory is your home directory.
[Windows uses the name folder instead of
directory.] For the root user, home is at
/root on Linux. For regular users, it is

2 Rev: 2016-09-29

often found at /home/username, but it
could be anywhere. Use the pwd
command (present working directory) to
see what your home directory is:

pwd

List the contents of your home directory
by using the ls (list) command:

ls

dir is the Windows equivalent of the ls
command. Unlike Windows command-
line shells, Unix commands are case-
sensitive, meaning that you cannot enter
LS and expect the shell to equate it to the
lower-case ls.

Without any arguments, ls will display
the contents of the current directory
without much special formatting (except
that it is sorted).

In addition to the files you can see, there
are other files that are “hidden”. In Unix,
hidden files are files that you don’t
necessarily want to see all the time.
Therefore, unless specifically requested,
they are not shown with a directory listing.
Any file or directory that begins with a ‘.’
is hidden, and is referred to as a dot file.

List all objects, even the hidden files and
directories, by also using the –a (all)
option, as shown below. (Note that there
must always be a space between the
command and any arguments being passed
to it).

ls –a

The home directory contains many user-
level configuration files for modifying
how your environment behaves, and they
are almost always dot files or dot
directories. The “.login” file (if it exists)
controls things you always want done

when you log in. The “.bashrc” file is
used to configure the shell. If these do not
exist, then system-wide configuration files
are typically used.

Get a bigger picture of the contents of the
current directory (such as owner and size)
by also using the -l (long) option, as
shown below:

ls –al

The ls -l command is used so often that
there is often a shortcut for it (ll). Try
using the shortcut for ls -l as shown
below:

ll

Without it being the current directory (i.e.,
the present working directory), the
contents of another directory can be listed.
List the contents of the bin (binary)
directory (where many user-level
commands are stored) by doing the
following:

ls /usr/bin

Users may also create new directories.
Create a directory from inside your home
directory (i.e., from within
/home/student) by using the mkdir
command:

mkdir temp
ll

Change your current directory to the new
directory using the cd (change directory)
command:

cd temp
pwd

List all the contents of this new directory:

ll -a

3 Rev: 2016-09-29

Even though a directory is brand new, it is
not exactly empty. Every directory has at
least two entries: two directories named
“.” and “..” (called dot and dotdot). The
dot directory is a shortcut for the current
directory, while dotdot is a shortcut to the
parent directory. Windows has borrowed
this philosophy too. (One thing hackers
do to hide their own files is to create a
directory with three dots, which might be
easily overlooked).

Use the dotdot directory to list the contents
of the parent directory:

ll ..

Use the dotdot directory to change your
working directory to the parent directory
of temp, as shown below:

cd ..
pwd

(Note that a nice feature of the cd
command is that if it is entered with no
arguments, it will always take you back to
your home directory).

Files or directories can be moved or
simply renamed by using the mv (move)
command. Rename the temp directory to
temp2 by doing the following:

mv temp temp2
ll

Copying files is done with the cp (copy)
command. Copy one of your hidden files
into the temp2 directory:

cp .bashrc temp2
ll -a temp2

You can, of course, rename the file while
copying. Copy the hidden file again,
renaming it in the process:

cp .bashrc temp2/.bash
ll –a temp2

Try to delete the temp2 directory using the
rmdir (remove directory) command:

rmdir temp2

It should have failed because files still
exist in that directory. Delete the files in
the temp2 directory by using the rm
(remove) command:

rm temp2/.bas*
ll –a temp2

Notice the use of the wild card “*” symbol
in the rm command. The command was
interpreted to mean: delete all the files
starting with “.bas”.

Now remove the directory:

rmdir temp2
ll

(Note that a rmdir will fail if you are
currently in that directory.)

To display the contents of a text file to the
screen, the cat (concatenate) command
can be used. Display the contents of the
password file:

cat /etc/passwd

Display text on the screen by using the
echo command:

echo "hello world"

The echo command may seem
meaningless, but it comes in handy, such
as when writing scripts (to be covered
later).

4 Rev: 2016-09-29

No space!

IV. Pipes and
Redirection
Outputs from commands are almost
always directed to the shell window,
immediately following the line where the
command was typed. If the output turns
out to be quite long, it is useful to have a
way to view it before it speeds by. One of
the commands from the last section
scrolled by too fast to see it all:

ls /usr/bin

One way to slow it down is to “pipe” it
into another command. The pipe symbol
is the “|” character (shift “\”). (Microsoft
also borrowed this concept).

Pipe the previous command through the
more command (as shown below), which
will display one screen at a time:

ls /usr/bin | more

To see the next page of output, press the
space bar. To see one line at a time, press
Enter. To quit at any time, press ‘q’.

This is traditionally the way complicated
commands are done in Unix: stringing
successive commands together with pipes.
The philosophy has been to keep
commands simple.

Another way to deal with a lot of output is
through redirection. The output of a
command can be redirected to a file using
the “>” redirection symbol. Microsoft
also borrowed this concept.

Redirect the directory listing into a file, as
shown in the following command:

ls /usr/bin > listing
ll

This file can now be viewed using more
or cat or your favorite editor.

If the file named “listing” already exists, it
will be overwritten with a redirection. It is
possible, however, to append the contents
of an existing file by using “>>”:

echo "testing" >> listing
cat listing

The displayed output should first list the
contents of the /usr/bin directory, followed
by the single word “testing”.

V. Help
The command-line method for getting help
is with the man command (short for
“manual”). Enter the following to get
more information about the mkdir
command:

man mkdir

The output is piped through the more
command. (Press ‘q’ to quit). You can
even get information about the man
command itself by entering the following:

man man

VI. Searching
The command for searching the contents
of a file for a given string is grep (global
regular expression pattern). (In Windows,
this command is called find).

5 Rev: 2016-09-29

Search for the string “student” in all the
files in the /etc directory:

grep student /etc/*

The first argument of the grep command
is the string to be searched for (student),
while the last argument is the file, or files,
to look in. The /etc directory is where
many configuration files are kept. The
output of grep consists of the file
name(s) the string was found in, and
sometimes the line in the file where it was
found. If the search string has spaces, then
it needs to be quoted.

There were a lot of errors reported from
the previous grep command, so you can
tell grep to be silent about those errors in
order to have a cleaner output:

grep -s student /etc/*

The Unix find command is like the Swiss
army knife of Unix commands, and is also
very useful for finding things. Its syntax is
somewhat complicated, and it can do
much more than can be shown in this
tutorial.

One basic use of find is to locate a file
with a known name. Use find to locate a
file called “hosts”, using the following
command:

find /etc –name hosts -print

find recursively checks all the directories
from the starting point down. In the above
example, it looked everywhere at and
below the “/etc” directory. The ”-name
hosts” tells find to search for all
files/directories whose name is “hosts”.
The “-print” tells find what to do when it
finds the requested file(s). In this case, it
prints out the path where it is located.

There were a lot of permission problems
with the last execution of the find
command. Gain root privilege by entering
the this command:

sudo su

The “student” account on this computer is
a member of the “sudo” group, allowing
you to work with root privileges. (Note
that for convenience, most Labtainer labs
are configured such that the “sudo”
command does not require you to provide
a password. Typical systems require use
of a password when using sudo.) You can
usually tell when you are executing with
root privileges in the shell, because the
conventional prompt is the ‘#’ character.
All other processes and windows are still
executing on behalf of the regular user.

Re-execute the last find command with
root privileges:

find /etc –name hosts -print

Wild card characters can be used, but they
must be quoted. For example, to find all
the files ending with “.h”, the following
could be used (typed on one line):

find /usr/include -name
"*.h" -print

An even more basic use of find is to
display the path of every file it sees. In
the following example, find is told to look
in the entire hierarchy starting with
“/usr/local”. When it finds a file, it prints
out the location. In other words, it will
display all the file and directory names in
the hierarchy.

find /usr/local –print

Return to the privilege of a regular user:

exit

6 Rev: 2016-09-29

You should still have a shell window
open, but the prompt should have returned
to what it was before su was entered ($).

VII. Access Control
Linux has the traditional simple Unix form
of Discretionary Access Control (DAC)
known as permission bits. Every file has
an owner, and every file belongs to a
group. The owner controls access to a file;
the owner of a file assigns his/her own
permissions, permissions for members of
the owning group, and others (everyone
else). These three entities (referred to as
user, group and other) may be given one or
more of the following permissions to files
or directories: read, write, and execute.

Display the contents of your home
directory:

cd
ll -a

The permissions are displayed on the far
left-hand side of the output of each object.
The permissions are broken down by user
(i.e., owner), group and others, as follows:

 User Group Other

- r w x r w – r – –

Each section is divided into one of three
permissions: read (r), write (w), and
execute (x). If a permission has been
granted then it appears, otherwise a ‘-‘
indicates the permission is not granted. In
the above example, the user (or file
owner) has all three permissions, while the
group has read and write permissions, and
other has only read permission.

For the curious, the leading ‘-‘ signifies a
file, while a ‘d’ indicates a directory.

To change permissions on a file or
directory, the chmod (change mode)
command is used. There are multiple
ways to use the interface, but these
examples will stick to what may be the
easiest to remember and understand. (The
GUI is the easiest of all.)

To indicate that the permissions of the user
need to be changed, use ‘u’. For the
group, use ‘g’, and for other use ‘o’. For
read, write and execute, use ‘r’, ‘w’ and
‘x’, respectively. For example, change the
permissions on your .bashrc file so that
everyone can write to it:

ll .bashrc
chmod o+w .bashrc
ll .bashrc

The “o+w” means “Add the write
permission to other”. Now remove the
permission:

chmod o-w .bashrc
ll .bashrc

Multiple changes can be made at one time.
Do the following to make multiple
changes at once:

chmod ugo+rwx .bashrc
ll .bashrc

where user, group and other are all given
read write and execute permissions to the
file.

To change the permissions so the group
and other only have read access, do the
following:

chmod go=r .bashrc
ll .bashrc

7 Rev: 2016-09-29

VIII. Process Management
To display a list of the processes currently
executing, the ps (process status)
command is used. Enter the following:

ps

Without any arguments, the default output
is a list of the processes associated with
your command-line session. Among other
things, it shows the unique process ID
(PID), the amount of CPU time used, and
the program name.

To display all the processes currently
running (even those not associated with
your terminal), enter the following:

ps ax

If a process ever gets hung and will not
die, the PID displayed for that process can
be used to terminate it. For example, if a
process with PID of 11076 needed to be
terminated, the following is used:

kill –9 11076

If the process needing termination is
running from the command-line, then
maybe something as simple as CTRL-C
will kill it.

To see who is currently logged into the
system, the following is used:

who

Since you are the only one logged in, it is
not very useful right now. But because
Unix can support a lot of users
simultaneously, it can be very helpful on a
production system. For example, if a
system administrator wants to reboot a
system, it would be wise to see if everyone
has logged out first.

IX. Editors
The traditional command-line editors in
Unix are vi and emacs. It is not
advisable to try to learn the vi editor
unless there is a professional need, such as
programming or an expectation of
administering systems. emacs works
better for a novice but it consumes 500
MB of disk, and is not typically included
in these labs. In the old days “Religious
wars” were waged over which was better,
though the advantage of emacs was
somewhat weakened when windowing
environments appeared.

For most novices, windowing editors will
suffice because are easy to learn.
However, windowing is not always
available, and you sometimes may need to
modify a file using a text based editor.
Labs in this course will include the
“leafpad” editor. This can be invoked by
typing leafpad at the command prompt.

X. History
By default, most Unix shells keep track of
the commands you have entered. Enter
the following to see the commands you
have entered as the student user:

history

There are several benefits of keeping track
of your commands. One benefit is being
able to reuse previous commands without
retyping them. One way to do that is to
use the up and down arrow keys. Once a
command is found using this approach, the
line can be modified before the Enter key
is pressed to execute the command.

Use the up arrow key until the last grep
command is displayed, then press Enter to
re-execute it.

8 Rev: 2016-09-29

An even quicker way to run the last grep
command is by using the ‘!’ character as
shown below:

!grep

Of course, the more general use of ‘!’ is to
search for the last command that started
with whatever follows “!”, such as “!ps”.

The more advanced uses of these features
will not be covered here.

XI. Shell Scripts
One way of automating repetitive
command-line tasks is to put those
commands into a file, make that file
executable (using the chmod command),
and execute it when needed. Such files are
called shell scripts or just scripts.
Microsoft calls them batch files. Very
complicated tasks can be performed with
shell scripts.

For this simple example you will be using
the diagnostic ping command. Ping is
mostly used to determine whether a
remote system is responding to low-level
network activity. Issue the following
ping command:

ping google.com

The above ping command determines
whether the machine with the given IP
address is working. When you have seen
enough, enter Ctrl-C to kill the pinging.

9 Rev: 2016-09-29

Assume a simple example: every morning
the first thing you do is verify that your
most important servers are accessible.
You might perform the following
commands (but not now):

ping mail
ping payroll
ping printer
ping router

It would be nice if one command could be
entered that would perform all your pings
at once. But before we do something like
that, let’s alter the ping commands to be
somewhat friendly for a script. Enter the
following:

 ping -c 1 -w 1
google.com

Instead of pinging continuously until
interrupted by the user, the above
command will ping only once (-c 1), and
will only wait one second (-w 1) for the
reply. That is an improvement, but you
don’t really want to see all that output. So
try the following (all on one command
line):

ping -c 1 -w 1
google.com > /dev/null

You redirected all the output into a black
hole from which nothing returns. So we
have removed all the output, but now we
don’t know if the ping was successful. So,
try the following addition (all on one
command line):

ping -c 1 -w 1
google.com > /dev/null &&
echo Up

That looks more like it. If ping is
successful, the command after “&&” is
executed, otherwise it is not. In this case

“Up” is displayed on the screen if the ping
is successful.

Now you can write a script. Start up an
editor, such as leafpad, and enter the
following lines:

echo
echo “Trying Google”
ping -c 1 -w 1
google.com > /dev/null &&
echo Up

echo
echo “Trying Bing”
ping -c 1 -w 1 bing.com
> /dev/null && echo Up

echo
echo “Trying NPS”
ping -c 1 -w 1 nps.edu >
/dev/null && echo Up

Save the file in your home directory with
the name of “pinger”, and then exit the
editor.
Make the file executable and try it out by
doing the following:

ll
chmod u+x pinger
ll
./pinger

Notice how you had to enter a “./” before
pinger? Why is that? The shell is
configured to look in given locations for
the commands entered by the user. Rarely
is the command in the current directory, so
if you want to execute something outside
the usual places, you must be explicit.
The “./” tells the shell to look in the
current directory. If you only enter
pinger then you’ll get a “command not
found” error.

10 Rev: 2016-09-29

That is the end of this tutorial. You will
learn more about Unix commands in other
lab assignments.

XII. Finish Up

After finishing the lab, go to the terminal
on your Linux system that was used to
start the lab and type:

stoplab nix-commands

11 Rev: 2016-09-29

	I. Historical Background
	II. Getting Started
	III. Basic Commands
	IV. Pipes and Redirection
	V. Help
	VI. Searching
	VII. Access Control
	VIII. Process Management
	IX. Editors
	X. History
	XI. Shell Scripts
	XII. Finish Up

